Enhanced sensitivity to anti-benzo(a)pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells.
نویسندگان
چکیده
DNA damage from exposure to environmental chemical carcinogens and failure of repair systems to eliminate these lesions from the genome are considered as the crucial initial steps in the development of various human malignancies. Many cellular proteins are known to play vital roles to overcome the effects of DNA damage. Among such proteins, p53 is known to respond to DNA damage by accumulating in the nucleus and inhibiting cell cycle progression to facilitate DNA repair and the maintenance of genomic stability. In this study, we have investigated the role of p53 protein in modulating nucleotide excision repair of anti-benzo-(a)pyrene-diol-epoxide (BPDE)-DNA adducts and related effects using human fibroblasts with normal (p53-WT) and altered p53 protein (p53Mut and p53-Null). Interestingly, irrespective of the presence or absence of p53, the anti-BPDE dose-dependent p21 protein induction response was qualitatively comparable in all of the three cell lines. However, cells with defective p53 function were deficient for the removal of anti-BPDE-DNA adducts from the overall genome compared to cells with wild-type p53 activity. Strand-specific repair analysis within the individual strands of the p53 gene revealed decreased repair of adducts from the nontranscribed strand in p53-Mut and p53-Null cells. However, the repair of the transcribed strand appeared to be identical in all of the three cell lines. Furthermore, p53-Mut and p53-Null cells were more sensitive than p53-WT cells and displayed increased levels of anti-BPDE-induced apoptosis. Thus, wild-type p53 is required for the efficient global genomic repair of anti-BPDE-induced DNA adducts from the overall genome, but not for transcription-coupled repair of actively transcribed genes. These findings indicate that inefficient DNA repair of potentially cytotoxic and mutagenic lesions from the nontranscribed strand due to the loss of p53, but not the loss of p21, function might be responsible for enhanced cytotoxicity and apoptosis in human cells upon DNA damage.
منابع مشابه
p53-dependent global genomic repair of benzo[a]pyrene-7,8-diol-9,10-epoxide adducts in human cells.
The global genomic repair of DNA adducts formed by the human carcinogen (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) has been studied by 32P-postlabeling in human fibroblasts in which p53 expression can be regulated. At low BPDE adduct levels (10-50 adducts/10(8) nucleotides), repair was rapid and essentially complete within 24 h in p53+ cells, whereas no repair was detected within 72...
متن کاملAdaptive upregulation of DNA repair genes following benzo(a)pyrene diol epoxide protects against cell death at the expense of mutations
A coordinated and faithful DNA damage response is of central importance for maintaining genomic integrity and survival. Here, we show that exposure of human cells to benzo(a)pyrene 9,10-diol-7,8-epoxide (BPDE), the active metabolite of benzo(a)pyrene (B(a)P), which represents a most important carcinogen formed during food preparation at high temperature, smoking and by incomplete combustion pro...
متن کاملThe role of p53 in DNA damage-mediated cytotoxicity overrides its ability to regulate nucleotide excision repair in human fibroblasts.
The p53 tumour suppressor protein plays a pivotal role in the response of mammalian cells to DNA damage. In addition to its regulatory role in cell cycle progression, p53 regulates apoptosis and can therefore influence cellular survival in response to DNA damage. More recent work has revealed that p53 is also involved in the nucleotide excision repair (NER) of structurally diverse types of DNA ...
متن کاملp53 controls global nucleotide excision repair of low levels of structurally diverse benzo(g)chrysene-DNA adducts in human fibroblasts.
Benzo(g)chrysene is a widespread environmental contaminant and potent carcinogen. We have measured the formation and nucleotide excision repair of covalent DNA adducts formed by the DNA-reactive metabolite of this compound in human fibroblasts, in which expression of the p53 tumor suppressor gene could be controlled by a tetracycline-inducible promoter. Cells were exposed for 1 h to 0.01, 0.1, ...
متن کاملTrans-4-hydroxy-2-nonenal inhibits nucleotide excision repair in human cells: a possible mechanism for lipid peroxidation-induced carcinogenesis.
Lipid peroxidation (LPO) is a cellular process that commonly takes place under normal physiological conditions. Under excessive oxidative stress, the level of LPO becomes very significant, and a growing body of evidence has shown that excessive LPO may be involved in carcinogenesis. Trans-4-hydroxy-2-nonenal (4-HNE) is a major product of LPO, and its level becomes relatively high in cells under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 60 8 شماره
صفحات -
تاریخ انتشار 2000